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ABSTRACT: A dye-doped polymer-dispersed liquid crystal (PDLC) is an N7
attractive material for application in smart windows. Smart windows using a < &,

PDLC can be operated simply and have a high contrast ratio compared to those of I 4=

other devices that employed photochromic or thermochromic material. However, in  Membrane emulsification
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conventional dye-doped PDLC methods, dye contamination can cause problems
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report on an approach to resolve dye-related problems by encapsulating the dye in

monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a
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contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye
in a core—shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based

smart windows.
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1. INTRODUCTION

Electro-optical switchable materials have been studied exten-
sively to develop smart glass or smart windows that function
through light transmission changes in response to a simple
electric charge.' ® For smart windows, polymer-dispersed
liquid crystal (PDLC) devices have been studied extensively,
which can control the transmission of light by an applied
voltage.” ™' For practical use in smart windows, it is necessary
to have a distinct transition between an opaque and transparent
state. As such, a high contrast ratio (CR) is critical for an
improved switching-state yield.

Until now, high switching yields with chromism have been
achieved by using dichroic dyes."'™'* However, the use of the
dichroic dye may cause stain contamination from dye residue
inside the polymer matrix. This results in the altered absorption
of UV light by the dye, causing poor polymerization of the
polymer matrix.'""*'*7'® These dye-related problems can be
responsible for a low switching-state yield, a short lifetime, and
a high driving voltage for the operation of a dye-doped PDLC
device. Thus, it is important to overcome dye-related problems
and enhance the CR in the development of a dye-doped PDLC.

A material encapsulation technique using core—shell
structured microcapsules may be a good candidate for
manufacturing a dye-doped PDLC. Via the adoption of the
encapsulation method, LC with a dye can be isolated in
microcapsules, resulting in the separation of dyes from the
polymer matrix. Furthermore, monodispersed LC-containing
capsules can provide enhanced light transmission by preventing
the light scattering caused by differently sized LC droplets.”"”
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Thus far, the microcapsule fabrication technique has shown
tremendous improvements by employing various methods such
as a layer-by-layer (LbL) method, microfluidic droplet
generation, and membrane emulsification.'®™>* Those methods
can open new avenues to overcome the limitations of dye-
doped PDLCs, which include dye-related issues and additional
light scattering due to LC distribution.

In this study, we fabricated uniform-sized microcapsules with
LC/dichroic dye cores and polyurethane/polyurea (PU/PUR)
shells to create a dye-doped PDLC with a high CR. To prevent
dye-related problems and to increase the CR, we fabricated the
LC/dye-encapsulating polyurethane particles through integra-
tion of membrane emulsification and interfacial polymerization.
Membrane emulsification produced monodispersed LC drop-
lets ~4.5 pm in diameter, and the capsules were directly made
through interfacial polymerization on the surface of the liquid
core.”>"** Isolation of LC with the dye by the PU/PUR capsule
allowed us to avoid previously reported dye-related issues.
Using LC/dye-encapsulated capsules, we demonstrated the
switch from transparent and opaque states of a dye-doped
PDLC through control of an ac current. We also performed
optical evaluations, including light transmittance and CR, to
demonstrate its practical application in smart windows.
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2. EXPERIMENTAL SECTION

2.1. Materials. Isophorone diisocyanate (IPDI), polypropylene
glycol (PPG, M,, ~ 2000), diethylenetriamine (DETA), dibutyltin
dilaurate (DBTDL), polystyrene (PS) particle (10 ym), Tween 20,
square-shaped indium tin oxide (ITO)-coated glass (surface resistivity
of 70—100 Q/sq, refractive index of 1.517), and polyvinylpyrrolidone
(PVP, M,, ~ 10000) were purchased from Sigma-Aldrich. ABIL EM 90
was purchased from Evonik Industries. LC (HPC 21600-000) and
Sudan black B (SBB) were obtained from HCCH China and TCI
America, respectively. The nematic—isotropic transition temperature
of LC was 95 °C, and refractive indices of LC are as follows: n, =
1.524, n, = 1.765 at 589 nm, 20 °C. NOA 65 was purchased from
Norland Products, and the refractive index of the cured polymer was
1.524. Deionized (DI) water (Human UP900, Human Corp.) was
used for all aqueous solutions. All chemicals were used as received
without purification.

2.2. Preparation of Emulsions and Microcapsules. The
dispersed phase consisted of 9.385 g of LC, 3.33 g of IPDI (1.0 M),
1.8 g of PPG (0.06 M), 0.4S g of ABIL EM 90 (3 wt %), and 0.01 g of
SBB (0.1 wt %).%° A mixture of 180 mL of DI water, 0.25% PVP (w/
v), and 0.0074% Tween 20 (w/v) was used as the continuous phase. In
this study, ABIL EM 90, PVP, and Tween 20 were used as a surfactant
to stabilize the emulsions and prevent droplet merging. The
microdroplets were generated by using a 1.1 gm pore SPG membrane
device (IMK-40M1, MC Tech) under a pressure of 20.2 kPa using
nitrogen gas. In the reservoir, as a dispersed phase, an LC solution was
passed through the membrane and a continuous phase was stirred at
175 rpm. The procedures are schematically shown in Figure S1. To
make a PU/PUR shell, the generated emulsion was first mixed with
0.03 g of DBTDL in a beaker and then mixed with the aqueous
solution of DETA (30.9 g), Tween 20 (0.07 g), PVP (0.3 g), and DI
water (90 mL) at 60 °C. Then, the beaker was sealed, and the solution
was stirred gently at 60 °C for S h. To characterize the generation of
the capsule quantitatively, the yield was defined as the weight ratio
between products and reactants. The obtained capsules were 13 g on
average using the conditions described here. According to the number
of functional groups in IPDI (two groups) and DETA (three groups),
supposing IPDI and DETA reacted with a 1.5:1 ratio, 1.03 g of DETA
reacted with 3.33 g of IPDI in the dispersed phase. Thus, the yield was
81%.

2.3. Stability Test of Capsules. To confirm the LC/dye
protection performance of the capsules, we dispersed the LC/dye-
containing capsules, cracked capsules using a mortar, and naked
droplets. Each sample (1 g) was dispersed in DI water (30 mL) for 1
h. Then, 1 mL of the solution was obtained, and samples were
separated with a centrifuge. The separated water was analyzed with a
Fourier transform infrared spectroscopy microscope (FT-IR, ALPHA,
BRUKER). In addition, we dispersed the capsules (0.03 g) in DI water
(12 mL) to confirm the stability of capsules depending on time. After
mixing, 1 mL of the solution was obtained, and the capsules were
separated with a centrifuge. The separated water was analyzed by FT-
IR.

2.4. Fabrication of a Dye-Doped PDLC Device. To fabricate a
dye-doped PDLC device, LC-encapsulating microcapsules, uncured
NOA 65, 10 ym diameter PS particle spacers for a uniform thickness,
and two ITO glasses were used. For the uniform dispersion of LC
capsules, 0.1 g of PS particles and 0.3 g of LC capsules were mixed in 1
g of DI water. Then, ITO glass was coated with 0.05 g of LC capsules
and the PS mixture. After being coated, the glass was dried at room
temperature for 12 h to evaporate the water completely. To make a
polymer matrix, 0.025 g of NOA 65 was coated on the other ITO
glass. Then, two ITO glasses were assembled together so that the
glasses were stacked with each other and pressed. Finally, NOA 65 was
cured by applying 7.5 J/cm?* of UV irradiation at 365 nm.

2.5. Electro-optical Property Measurements. The electro-
optical property of the dye-doped PDLC was measured by applied
voltage in the range of 0—100 V for a dye-doped PDLC device at 1
kHz using a function generator (332204, Agilent/HP), a voltage
amplifier (F10A, FLC Electronics), and UV—vis spectroscopy

(OPTIZEN 3220UV, MECASYS). The function generator can apply
0—-10 V in 1 kHz, and the voltage amplifier can amplify the voltage 10
times. UV—vis spectroscopy was used to monitor the transmittance
change of the dye-doped PDLC device according to the applied
voltage.

2.6. Instruments. A field-emission transmission electron micro-
scope (FE-TEM, Tecnai TF30 ST, FEI Co.), a field-emission scanning
electron microscope (FE-SEM, S-4800, Hitachi), and a polarized
optical microscope (POM, LV-100POL, Nikon) with a charge-coupled
device (CCD) camera were used to characterize the morphology of
the capsules.

3. RESULTS AND DISCUSSION

3.1. Design of the Overall Experimental System. All
the fabrication procedures are schematically shown in Figure 1.
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Figure 1. Schematic diagrams of the overall experimental system. (A)
LC-containing droplet generation by the SPG membrane. (B) PU/
PUR shell formation by interfacial polymerization. Electro-optical
switching of dye-doped PDLC device in (C) the opaque state and (D)
the transparent state by the applied electric field.

To fabricate LC-containing droplets, a hydrophobic dispersed
phase (LC, dye, and monomers) was pressurized equally by
nitrogen gas through a uniform pore-sized hydrophilic
membrane. When the pressure reached a critical value, the
LC solution overcomes the capillary pressure of the membrane
pore and forms pendant drops on pores. With enough pressure
to overcome the interfacial tension of each drop, the drops
became sufficiently large and detached by shear force from the
agitation of the surrounding water as shown in Figure 1A.*
The detached droplets were stabilized by surfactants, and the
polymerization began. The droplets are shown in Figure S2.
The droplets had a diameter of 446 + 0.24 um, and the
coeflicient of variation was 5%. Inside the droplets, monomers
reacted with each other and formed a polymer shell at the
interface between the LC solution and amine-containing water
as shown in Figure 1B. Finally, the fabricated capsules were
applied in a dye-doped PDLC device to demonstrate control of
light transmission as illustrated in panels C and D of Figure 1.
The word “KAIST” was covered with the opaque dye-doped
PDLC device at an off state, whereas “KAIST” can be seen
when the electric field was applied to the dye-doped PDLC
device.

3.2. Mechanism of PU/PUR Capsule Formation. To
cover the LC and dye, PU/PUR was adopted as a LC-
encapsulating polymer shell because of its refractive index
(1.5—1.6), good mechanical property, and weatherability.”' =
For the formation of a PU shell, IPDI and PPG were mixed
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with a LC solution and became components of the droplets. As
monomers, IPDI and PPG have an isocyanate (NCO) group
and hydroxyl (OH) group, respectively (Figure 2A and reaction
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Figure 2. Scheme of PU/PUR shell formation. (A) IPDI, PPG, LC,
and the dye-containing droplet. (B) Oligomer-synthesized droplet.
(C) DETA-added droplet. (D) LC/dye-containing PU/PUR shell
microcapsules. During the process, (1) urethane reaction, (2) reaction
between IPDI and H,0, and (3) a urea reaction can occur.

1). Here, PPG was not only a reactant but also a nonionic
surfactant that improved the stability and size distribution of
the emulsion.”* In an IPDI molecule, two types of NCO groups
exist, a primary isocyanatomethyl and a secondary cyclo-
aliphatic isocyanate. Between the two NCO groups, the
secondary isocyanate group is more reactive than the primary
isocyanatomethyl group. In comparison with the secondary
isocyanate group, the primary isocyanatomethyl group is less
reactive because it is shielded to a greater extent by the adjacent
methyl group and S-carbon.”

The reaction between the NCO group and OH group did
not occur at the emulsification step (Figure 2A) because of the
low activity of IPDI. Hence, the produced emulsion was mixed
with a Sn catalyst and heated to activate a NCO group. The
catalyst made the carbonyl carbon of the NCO group electron-
deficient and reactive. The activated NCO group reacted with
the OH group of PPG and produced a urethane oligomer for
step growth polymerization (Figure 2B and reaction 1).

In addition to reaction 1 in Figure 2, a side reaction can also
occur between the NCO group and surrounding water
molecules as shown in reaction 2. The NCO group forms an
unstable amino acid group that dissociates into carbon dioxide

and an amine end group.”® The amine group of the resulting
reaction 2 participated in the following urea reaction 3 and
converted to a urethane group.

After the formation of an oligomer, the remaining IPDI and
oligomer reacted with DETA for further polymerization and
interconnection of the oligomers by reaction 3 (Figure 2C).
The DETA molecule has one reactive secondary amine in the
middle and two primary amines at both ends.”’ The NCO
group of IPDI and oligomers in a droplet reacted with the
amine groups of DETA in the surrounding solution to form a
urea group and cross-link the polymer chains on the surface of
the droplets. After all of the reactions, LC/dye-containing PU/
PUR capsules were obtained as illustrated schematically in
Figure 2D.

3.3. Characterization of Fabricated LC Capsules. To
confirm the proposed mechanism of PU/PUR shell formation,
reactants and products were characterized by FT-IR (Figure 3).
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Figure 3. FT-IR spectra of the LC (black), (A) the IPDI/PPG/LC/
dye mixture, (B) the oligomer-synthesized droplet, (C) the DETA-
added droplet, and (D) the LC/ dye-containing PU/PUR  shell

microcapsules.

In the spectra of the LC, the absorption peak located at 2225
cm™" was used to identify the LC. Here, the peak originated
from the stretching vibration of nitrile (C=N) group, and
another peak at 2950 cm ™" was from the stretching vibration of
CH in the alkyl chain. In the spectra of the dispersed phase
(IPDL, PPG, and LC) (Figure 3A), the peak of the C=N group
appeared to be due to the LC, and other peaks were also
present at 2250 and 1100 cm ™', which were attributed to the
stretching vibration of the NCO group from the IPDI and ether
(C-0-C) group from PPG, respectively. Because of the
synthesized urethane (—NHCOO—) group, two more peaks
were present at 3340 cm™' for the NH group and 1720 cm™
for the carbonyl (C=0) group as shown in Figure 3B. The
intensity of the peak of the NCO group at 2250 cm ™" decreased
sharply, and the intensity of the peak of the NH group at 3340
cm™' increased with the addition of DETA (Figure 3C).
Furthermore, new peaks were observed at 1630 and 1560 cm™,
which can be ascribed to the stretching vibration of the C=0
group in the urea (—NHCONH-) group and the bending
vibration of NH in the urea group. These changes and
generation of peaks prove that the NCO group reacted with an
added amine (DETA) and produced urea linkages. In the
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spectra of the fabricated capsules (Figure 3D), we were able to
observe the disappearance of the peak corresponding to the
NCO group at 2250 cm ™, the appearance of the peak of the
NH group at 3340 cm ™, and the peak of the C=N group of
LC at 2225 cm™". The obtained results provide confirmation of
the encapsulation of LC in PU/PUR.

3.4. Characterization of the Morphology of LC
Capsules. The fabricated PU/PUR capsules were character-
ized to examine their morphology and size distribution as
shown in Figure 4 and Figure S3. The capsules had a diameter

Figure 4. (A) SEM image of PU/PUR capsules and TEM images of
the capsule (B) with LC and (C) without LC. The scale bar is 2 ym.

of 4.58 + 0.19 um with a of shell thickness of 100 nm on
average, and the coeflicient of variation was 4%, which indicates
high monodispersity.*® The monodisperse capsules can prevent
additional light scattering caused by interdroplet scattering of
different-sized droplets. To check the core—shell structure,
sliced capsules were analyzed by scanning electron microscopy
(Figure S4), and transmission electron microscopy analysis was
also used to observe the inside of the capsules. The fully filled
dark shape (Figure 4B) represented that LC was filled in the
PU/PUR capsule. The wrinkled transparent image (Figure 4C)
showed a case of deflated capsules. The results confirmed a
core—shell structure. Filled LC was also investigated by a
polarized optical microscope.

To demonstrate the performance of the LC core, polarized
light was illuminated to microcapsules as shown in Figure 5.

Figure S. (A) Optical microscopic image of microcapsules and (B)
polarization microscopic image of microcapsules. The scale bar is 25
pm.

The LC cores showed shiny colors because of its optical
anisotropy, whereas isotropic material like water was shown as
black. The LC cores show aligned characteristics in Figure SS5.
In addition, the nematic—isotropic transition temperature was
investigated (Figure S6). The original nematic—isotropic
transition temperature of LC was 95 °C. However, the
temperature of encapsulated LC with dye became 90 °C.

3.5. Test of the Stability of Capsules. Stability tests were
performed to confirm the dye-doped LC holding capability of
the capsules during the fabrication process (Figure S7). In
panel A, the case of encapsulated LC/dye showed no peaks. In
the case of cracked capsules, there were several low peaks
around 1500 cm™!, which differed from those seen in
encapsulated LC/dye tests. This result might come from the
small amount of leakage of core materials. The naked droplets
also showed several little peaks around 1500 cm™; in addition,
this case showed LC peaks at 1500 and 1600 cm™". This result
was reasonable because the naked droplets were present in
forms of emulsion, which means there were many dispersed
dye-doped LCs in the water. The results show the dye-doped
LC holding capability of capsules. In addition, to confirm the
stability of capsules depending on time, the fabricated LC/
dye—core capsules were dispersed in DI water for 0 h to 7 days
(Figure S7B). The FT-IR spectra showed no peaks even after 7
days. The results showed that a PU/PUR shell successfully held
the LC/dye during the fabrication process. Therefore, the
proposed LC/dye encapsulation can prevent dye-related
problems and enhance the electro-optical properties of the
dye-doped PDLC. The capsules were also tested in various
organic solvents such as acetone, ethanol, and isopropyl
alcohol. In these solvents, the capsules released core materials
by dissolving the capsules.

3.6. Application and Evaluation of a Dye-Doped PDLC
Device. Using the PU/PUR capsules, we assembled a dye-
doped PDLC device to demonstrate the applicability of the
capsulized LC (Figure 6). The dye-doped PDLC device was

Figure 6. Photographs of (A) the voltage supplier and amplifier, (B)
the fabricated dye-doped PDLC device, and (C) the off state (opaque)
and (D) on state (transparent) of the dye-doped PDLC.

operated by supplying voltage from a function generator and a
voltage amplifier (Figure 6A,B). In the absence of an electric
field, LC and dye were randomly distributed. This random
arrangement brought about mismatched refractive indices
between the LC and polymer matrix and caused the opaque
state of the dye-doped PDLC (Figure 6C). In comparison,
applying an electrical field produced alignment of LC with the
dye, which resulted in the refractive index matching with the
polymer substrate as shown in Figure 6D.° The appearance of
the previously hidden words “PROCAL” and “KAIST”
indicates that a transparent state was achieved for the dye-
doped PDLC.
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We evaluated the electro-optical properties of dye-doped
PDLC for practical application. Transmittance, CR, threshold
voltage (Vy), and driving voltage (V) are typical evaluation
parameters for dye-doped PDLCs.'”"""#***” We present the
data in Figure 7 and Table 1. Parameters Vy, V,,, and CR are
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Figure 7. Applied voltage (1 kHz) dependence of the transmittance at
different wavelengths.

Table 1. Electro-optical Properties of the Dye-Doped PDLC
at Different Wavelengths

wavelength (nm) T, (%) T (%) CR Vi (V) Vo, (V)
700 0.83 90.46 109 8.1 20.9
650 0.69 82.83 120 8.1 21.3
600 0.66 79.89 121 8.2 224
550 0.68 81.39 120 8.3 23.6
500 0.67 78.68 117 8.6 26.4
450 0.57 61.79 108 8.7 33.5
400 0.45 26.04 58 8.4 39.9

generally defined as the voltage at 10 and 90% of the total
transmittance change and the ratio between maximal trans-
mittance (T,) and minimal transmittance (T,), respectively. In
Figure 7, transmittance increased with the wavelength because
of the dispersed LC, which has a high transmittance at a high
wavelength. As a result, the highest T,,, was measured in dark
red light at 700 nm as 90.46. Table 1 reports the properties
over a visible wavelength range. In this range, the CR was 121
at 600 nm, corresponding to orange light. This value is
sufficiently high compared with those from other studies in
Table 2. The enhanced CR would be a result of the synergistic
effect of the dye and monodisperse capsules. On the basis of
the presented data, we believe that a dye-doped PDLC device
using LC/dye capsules is suitable for practical smart windows.

Table 2. Data from Other Studies

[dye]
light source dye (wt %) CR“
halogen laser beam, - 0 45-50"°
560 nm
UV—vis, 600 nm Sudan black B 0.1 117.28%
He—Ne laser, Disperse red 1 0.015 114.6"
632.8 nm
anthraquinone red S 85.5%
white light Hayashibara, azo type 0.2 ~9'?
(G-series)
Disperse orange 3 0.0625 105.88"

“The CR values are the maximal values of each study.

4. CONCLUSION

In this work, we fabricated microcapsules to isolate LC with a
dye from a polymer matrix in dye-doped PDLC to improve
transmittance and to prevent problems with dye contamination.
The produced LC/dye-containing PU/PUR microcapsules
were monodisperse with a diameter of ~4.5 ym. A mechanism
for shell formation was also proposed. Furthermore, the LC/
dye holding capacity of capsules without leakage was carefully
investigated. To demonstrate the capability of encapsulated
LC/dye in capsules as smart windows, we fabricated a dye-
doped PDLC device. The device showed a CR higher than 120
at 600 nm and a T, of 90 at 700 nm. The results for the LC/
dye—core/PU/PUR—shell microcapsules and dye-doped
PDLC device indicate that LC-encapsulated capsules are
promising for application in flexible displays and wearable
PDLCs, as well as in improved smart windows.
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